- функция n-го приближения
- Mathematics: n-th order function
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
ПРИБЛИЖЕНИЯ ФУНКЦИЙ МЕРА — количественное выражение погрешности приближения. Когда речь идет о приближении функции f(t) функцией j(t), мера приближения m(f, j) обычно определяется метрикой нек рого функционального пространства, содержащего как f(t), так и j(t). Напр., если … Математическая энциклопедия
ПРИБЛИЖЕНИЯ ПОРЯДОК — аппроксимации порядок, порядок погрешности приближения как переменной величины, зависящей от непрерывного или дискретного аргумента t, относительно другой переменной j(t), поведение к рой, как правило, считается известным. Обычно t нек рый… … Математическая энциклопедия
Функция распределения простых чисел — В математике функция распределения простых чисел или пи функция это функция равная числу простых чисел, меньше либо равных действительному числу x.[1][2] Она обозначается (это никак не связано с числом пи) … Википедия
Функция влияния — Наличие в выборках даже небольшого числа резко выделяющихся наблюдений способно фатально повлиять на результат статистического исследования (к примеру, того же метода наименьших квадратов или метода максимального правдоподобия), и может… … Википедия
ОДНОЛИСТНАЯ ФУНКЦИЯ — функция f, регулярная или мероморфная в области Врасширенной комплексной плоскости п такая, что для всяких zl , выполняется соотношение то есть f отображает В в взаимно однозначно. При этом обратная функция также однолистна. Обобщением О. ф.… … Математическая энциклопедия
Моногенная функция — Функция называется моногенной (или дифференцируемой в смысле комплексного анализа) в точке , если предел существует и одинаков для приближения к точке по произвольному пути. Ключевую роль в этом играет так называемое условие Коши Римана. Функция … Википедия
МОНОГЕННАЯ ФУНКЦИЯ — функция комплексного переменного, имеющая конечную производную. Точнее, функция , определенная на множестве Екомплексной плоскости , наз. моногенной (относительно множества Е)в конечной неизолированной точке , если она имеет в этой точке конечную … Математическая энциклопедия
Стеклова функция — функция, определяемая для данной функции f (x) равенством где h настолько мало, что интервал (x, х + h) лежит в области определения функции f (x). С. ф. применяются для сглаживания данной функции, т.к. если функция f (x) … Большая советская энциклопедия
Рациональная функция — функция, получающаяся в результате конечного числа арифметических операций (сложения, умножения и деления) над переменным х и произвольными числами. Р. ф. имеет вид: где a0, a1, ..., an и b0, b1, ..., bm (a0 ≠ 0, b0(0)… … Большая советская энциклопедия
ДИОФАНТОВЫ ПРИБЛИЖЕНИЯ — раздел теории чисел, в к ром изучаются приближения нуля значениями функций от конечного числа целочисленных аргументов. Первоначальные задачи Д. п. касались рациональных приближений к действительным числам, но развитие теории привело к задачам, в … Математическая энциклопедия
Полигенная функция — Комплекснозначная функция f(z) называется моногенной в области G, если для произвольной точки предел существует и одинаков для приближения z к z0 по произвольному пути. Функция называется полигенной, если подобный предел зависит от пути и имеет… … Википедия